Copied to
clipboard

G = C62.20C23order 288 = 25·32

15th non-split extension by C62 of C23 acting via C23/C2=C22

metabelian, supersoluble, monomial

Aliases: C62.20C23, Dic3:C4:1S3, (S3xC6).28D4, C6.134(S3xD4), D6:Dic3:29C2, (C2xC12).257D6, (C2xDic3).7D6, C6.18(C4oD12), C3:6(D6.D4), D6.11(C3:D4), C6.5(Q8:3S3), C62.C22:2C2, (C22xS3).59D6, C6.D12:20C2, C6.11D12:13C2, (C6xC12).211C22, C2.6(D6.D6), C2.8(D6.6D6), C3:1(C23.28D6), C32:2(C22.D4), (C6xDic3).106C22, (S3xC2xC4):7S3, (C2xC4).39S32, (S3xC2xC12):15C2, C2.9(S3xC3:D4), C22.78(C2xS32), (C3xC6).78(C2xD4), C6.27(C2xC3:D4), (C3xDic3:C4):3C2, (C3xC6).9(C4oD4), (S3xC2xC6).69C22, (C2xC3:D12).1C2, (C2xC6).39(C22xS3), (C22xC3:S3).8C22, (C2xC3:Dic3).20C22, SmallGroup(288,498)

Series: Derived Chief Lower central Upper central

C1C62 — C62.20C23
C1C3C32C3xC6C62S3xC2xC6D6:Dic3 — C62.20C23
C32C62 — C62.20C23
C1C22C2xC4

Generators and relations for C62.20C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=b3, e2=a3, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=a3c, ce=ec, ede-1=b3d >

Subgroups: 730 in 173 conjugacy classes, 48 normal (44 characteristic)
C1, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, C23, C32, Dic3, C12, D6, D6, C2xC6, C2xC6, C22:C4, C4:C4, C22xC4, C2xD4, C3xS3, C3:S3, C3xC6, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C22xS3, C22xS3, C22xC6, C22.D4, C3xDic3, C3:Dic3, C3xC12, S3xC6, S3xC6, C2xC3:S3, C62, Dic3:C4, Dic3:C4, D6:C4, C6.D4, C3xC4:C4, S3xC2xC4, C2xD12, C2xC3:D4, C22xC12, C3:D12, S3xC12, C6xDic3, C2xC3:Dic3, C6xC12, S3xC2xC6, C22xC3:S3, D6.D4, C23.28D6, D6:Dic3, C6.D12, C62.C22, C3xDic3:C4, C6.11D12, C2xC3:D12, S3xC2xC12, C62.20C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C4oD4, C3:D4, C22xS3, C22.D4, S32, C4oD12, S3xD4, Q8:3S3, C2xC3:D4, C2xS32, D6.D4, C23.28D6, D6.D6, D6.6D6, S3xC3:D4, C62.20C23

Smallest permutation representation of C62.20C23
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 15 3 17 5 13)(2 16 4 18 6 14)(7 44 11 48 9 46)(8 45 12 43 10 47)(19 29 21 25 23 27)(20 30 22 26 24 28)(31 37 35 41 33 39)(32 38 36 42 34 40)
(1 48)(2 43)(3 44)(4 45)(5 46)(6 47)(7 17)(8 18)(9 13)(10 14)(11 15)(12 16)(19 38)(20 39)(21 40)(22 41)(23 42)(24 37)(25 34)(26 35)(27 36)(28 31)(29 32)(30 33)
(1 40 17 36)(2 39 18 35)(3 38 13 34)(4 37 14 33)(5 42 15 32)(6 41 16 31)(7 30 48 24)(8 29 43 23)(9 28 44 22)(10 27 45 21)(11 26 46 20)(12 25 47 19)
(1 21 4 24)(2 22 5 19)(3 23 6 20)(7 36 10 33)(8 31 11 34)(9 32 12 35)(13 29 16 26)(14 30 17 27)(15 25 18 28)(37 48 40 45)(38 43 41 46)(39 44 42 47)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,3,17,5,13)(2,16,4,18,6,14)(7,44,11,48,9,46)(8,45,12,43,10,47)(19,29,21,25,23,27)(20,30,22,26,24,28)(31,37,35,41,33,39)(32,38,36,42,34,40), (1,48)(2,43)(3,44)(4,45)(5,46)(6,47)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,38)(20,39)(21,40)(22,41)(23,42)(24,37)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33), (1,40,17,36)(2,39,18,35)(3,38,13,34)(4,37,14,33)(5,42,15,32)(6,41,16,31)(7,30,48,24)(8,29,43,23)(9,28,44,22)(10,27,45,21)(11,26,46,20)(12,25,47,19), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,36,10,33)(8,31,11,34)(9,32,12,35)(13,29,16,26)(14,30,17,27)(15,25,18,28)(37,48,40,45)(38,43,41,46)(39,44,42,47)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,3,17,5,13)(2,16,4,18,6,14)(7,44,11,48,9,46)(8,45,12,43,10,47)(19,29,21,25,23,27)(20,30,22,26,24,28)(31,37,35,41,33,39)(32,38,36,42,34,40), (1,48)(2,43)(3,44)(4,45)(5,46)(6,47)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16)(19,38)(20,39)(21,40)(22,41)(23,42)(24,37)(25,34)(26,35)(27,36)(28,31)(29,32)(30,33), (1,40,17,36)(2,39,18,35)(3,38,13,34)(4,37,14,33)(5,42,15,32)(6,41,16,31)(7,30,48,24)(8,29,43,23)(9,28,44,22)(10,27,45,21)(11,26,46,20)(12,25,47,19), (1,21,4,24)(2,22,5,19)(3,23,6,20)(7,36,10,33)(8,31,11,34)(9,32,12,35)(13,29,16,26)(14,30,17,27)(15,25,18,28)(37,48,40,45)(38,43,41,46)(39,44,42,47) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,15,3,17,5,13),(2,16,4,18,6,14),(7,44,11,48,9,46),(8,45,12,43,10,47),(19,29,21,25,23,27),(20,30,22,26,24,28),(31,37,35,41,33,39),(32,38,36,42,34,40)], [(1,48),(2,43),(3,44),(4,45),(5,46),(6,47),(7,17),(8,18),(9,13),(10,14),(11,15),(12,16),(19,38),(20,39),(21,40),(22,41),(23,42),(24,37),(25,34),(26,35),(27,36),(28,31),(29,32),(30,33)], [(1,40,17,36),(2,39,18,35),(3,38,13,34),(4,37,14,33),(5,42,15,32),(6,41,16,31),(7,30,48,24),(8,29,43,23),(9,28,44,22),(10,27,45,21),(11,26,46,20),(12,25,47,19)], [(1,21,4,24),(2,22,5,19),(3,23,6,20),(7,36,10,33),(8,31,11,34),(9,32,12,35),(13,29,16,26),(14,30,17,27),(15,25,18,28),(37,48,40,45),(38,43,41,46),(39,44,42,47)]])

48 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C4A4B4C4D4E4F4G6A···6F6G6H6I6J6K6L6M12A12B12C12D12E···12J12K12L12M12N12O12P12Q12R
order122222233344444446···666666661212121212···121212121212121212
size1111663622422661212362···2444666622224···4666612121212

48 irreducible representations

dim111111112222222224444444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3S3D4D6D6D6C4oD4C3:D4C4oD12S32S3xD4Q8:3S3C2xS32D6.D6D6.6D6S3xC3:D4
kernelC62.20C23D6:Dic3C6.D12C62.C22C3xDic3:C4C6.11D12C2xC3:D12S3xC2xC12Dic3:C4S3xC2xC4S3xC6C2xDic3C2xC12C22xS3C3xC6D6C6C2xC4C6C6C22C2C2C2
# reps1111111111232144121111222

Matrix representation of C62.20C23 in GL6(F13)

100000
010000
001000
000100
0000112
000010
,
1200000
0120000
0012100
0012000
000010
000001
,
1200000
0120000
0001200
0012000
000029
0000411
,
630000
570000
0012000
0001200
000033
0000610
,
7100000
360000
001000
000100
000050
000005

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,12,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,2,4,0,0,0,0,9,11],[6,5,0,0,0,0,3,7,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,3,6,0,0,0,0,3,10],[7,3,0,0,0,0,10,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C62.20C23 in GAP, Magma, Sage, TeX

C_6^2._{20}C_2^3
% in TeX

G:=Group("C6^2.20C2^3");
// GroupNames label

G:=SmallGroup(288,498);
// by ID

G=gap.SmallGroup(288,498);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,120,219,58,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=b^3,e^2=a^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=a^3*c,c*e=e*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<